Publications

Full list: [Google scholar] | [DBLP]

2023

  1. NeurIPS
    Learning Energy-based Model via Dual-MCMC Teaching
    Jiali Cui, and Tian Han
    In Advances in Neural Information Processing Systems (NeurIPS) , 2023
  2. ICCV
    Learning Hierarchical Features with Joint Latent Space Energy-Based Prior
    Jiali Cui, Ying Nian Wu, and Tian Han
    In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023
  3. CVPR
    Learning Joint Latent Space EBM Prior Model for Multi-layer Generator
    Jiali Cui, Ying Nian Wu, and Tian Han
    In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023
  4. UAI
    Molecule Design by Latent Space Energy-Based Modeling and Gradual Distribution Shifting
    Deqian Kong, Bo Pang, Tian Han, and Ying Nian Wu
    In Uncertainty in Artificial Intelligence (UAI), 2023

2022

  1. NeurIPS
    Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space Energy-based Model
    Zhisheng Xiao, and Tian Han
    In Advances in Neural Information Processing Systems (NeurIPS) , 2022
  2. AAAI
    Learning from the Tangram to Solve Mini Visual Tasks
    Yizhou Zhao, Liang Qiu, Pan Lu, Feng Shi, Tian Han, and Song-Chun Zhu
    In Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI) , 2022
  3. AAAI
    Context-Aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs
    Chang Lu, Tian Han, and Yue Ning
    In Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI) , 2022

2021

  1. EACL
    Generative Text Modeling through Short Run Inference
    Bo Pang, Erik Nijkamp, Tian Han, and Ying Nian Wu
    In The 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL) , 2021

2020

  1. NeurIPS
    Learning Latent Space Energy-Based Prior Model
    Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu
    In Advances in Neural Information Processing Systems (NeurIPS) , 2020
  2. AAAI
    On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
    Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu
    In The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI) , 2020
  3. CVPR
    Joint Training of Variational Auto-Encoder and Latent Energy-Based Model
    Tian Han, Erik Nijkamp, Linqi Zhou, Bo Pang, Song-Chun Zhu, and Ying Nian Wu
    In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) , 2020
  4. ECCV
    Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference
    Erik Nijkamp, Bo Pang, Tian Han, Linqi Zhou, Song-Chun Zhu, and Ying Nian Wu
    In 16th European Conference on Computer Vision (ECCV) , 2020

2019

  1. CVPR
    Divergence Triangle for Joint Training of Generator Model, Energy-Based Model, and Inferential Model
    Tian Han, Erik Nijkamp, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu
    In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019
  2. CVPR
    Unsupervised Disentangling of Appearance and Geometry by Deformable Generator Network
    Xianglei Xing, Tian Han, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu
    In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019

2018

  1. IJCAI
    Replicating Active Appearance Model by Generator Network
    Tian Han, Jiawen Wu, and Ying Nian Wu
    In the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI) , 2018

2017

  1. AAAI
    Alternating Back-Propagation for Generator Network
    Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu
    In the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), 2017