Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space Energy-based Model

Motivations and Backgrounds

Backgrounds:

- Given two distributions with density p(x) and q(x), the density ratio $r(x) = \frac{p(x)}{q(x)}$ can be estimated by **training a classifier to distinguish samples** from p and q
- Such a technique can be useful for training Energy-based models (EBMs)
- However, the density ratio estimation is severely inaccurate when the gap between p and q is large
- In practice, it is difficult to apply this technique to train EBMs, since we typically do not have a parametrized base distribution that is close to the data distribution

Motivations for adaptive multi-stage density ratio estimation:

- The biggest issue for density ratio estimation is the discrimination being too easy, so the discriminator does not learn meaningful information
- We design multiple stages of density ratio estimation, where in each stage we update the base distribution and target distribution adaptively, so that the discrimination task is increasing harder

VAE [23]	MSE	FID	MSE	FID	MSE	FID
VAE [23]	0.010					
	0.019	46.78	0.021	65.75	0.057	106.37
ABP [13]	-	49.71	-	51.50	-	-
SRI [33]	0.018	44.86	0.020	61.03	-	-
l (L=5) [33]	0.011	35.32	0.015	47.95	-	-
s-VAE [4]	0.019	42.81	0.021	44.40	0.056	72.90
RAE [9]	0.014	40.02	0.018	40.95	0.027	74.16
P-VAE [1]	0.020	33.23	0.021	42.07	0.054	78.06
EBM [36]	0.008	29.44	0.013	37.87	0.020	70.15
tive CE (ours)	0.004	26.19	0.009	35.38	0.008	65.01
	SRI [33] [(L=5) [33] s-VAE [4] RAE [9] CP-VAE [1] EBM [36] tive CE (ours)	SRI [33] 0.018 I (L=5) [33] 0.011 s-VAE [4] 0.019 RAE [9] 0.014 CP-VAE [1] 0.020 EBM [36] 0.008 tive CE (ours) 0.004	SRI [33] 0.018 44.86 I (L=5) [33] 0.011 35.32 s-VAE [4] 0.019 42.81 RAE [9] 0.014 40.02 CP-VAE [1] 0.020 33.23 EBM [36] 0.008 29.44	SRI [33] 0.018 44.86 0.020 I (L=5) [33] 0.011 35.32 0.015 s-VAE [4] 0.019 42.81 0.021 RAE [9] 0.014 40.02 0.018 CP-VAE [1] 0.020 33.23 0.021 EBM [36] 0.008 29.44 0.013 tive CE (ours) 0.004 26.19 0.009	SRI [33] 0.018 44.86 0.020 61.03 I (L=5) [33] 0.011 35.32 0.015 47.95 s-VAE [4] 0.019 42.81 0.021 44.40 RAE [9] 0.014 40.02 0.018 40.95 CP-VAE [1] 0.020 33.23 0.021 42.07 EBM [36] 0.008 29.44 0.013 37.87 tive CE (ours) 0.004 26.19 0.009 35.38	SRI [33] 0.018 44.86 0.020 61.03 - I (L=5) [33] 0.011 35.32 0.015 47.95 - s-VAE [4] 0.019 42.81 0.021 44.40 0.056 RAE [9] 0.014 40.02 0.018 40.95 0.027 CP-VAE [1] 0.020 33.23 0.021 42.07 0.054 EBM [36] 0.008 29.44 0.013 37.87 0.020 tive CE (ours) 0.004 26.19 0.009 35.38 0.008

Zhisheng Xiao, Tian Han

• The ratio estimated in stage k can be integrated to form a new prior in stage k + 1

Summary

6

- In this paper, we propose adaptive multi-stage density ratio estimation, which is an effective method for learning an EBM prior for a generator model
- Our method learns the latent EBMs by introducing multiple density ratio estimators that learn the density ratio between prior and posterior sequentially and adaptively
- Empirical results show the advantage of our method on generation, reconstruction and anomaly detection tasks.